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Barrier effects in dispersive media 

ROBERT M. HILL,  COLIN PICKUP 
The Dielectrics Group, Chelsea College, University of London, Pulton Place, 
London SW6 5PR, UK 

The effect of barrier layers with a generalized dielectric response on the measure- 
ment of the dielectric properties of materials are investigated, using the cluster 
model of relaxation to represent both the bulk and barrier properties. It is shown 
that the Maxwell-Wagner response is a limiting case and only applicable when the 
series elements are perfect, non-dispersive capacitors and resistors. A number of 
experimentally investigated systems are examined and it is shown that there is clear 
evidence for the proposed model in a wide range of applications. 

1. I n t r o d u c t i o n  
The measurement of the dielectric properties of 
a material requires the imposition of a pair of 
electrically conducting electrodes, usually on 
opposite faces of a thin parallel-sided slab of the 
material to be examined. Only in the particular 
case of semiconductor junctions can the elec- 
trodes be intrinsic to the sample for, in this case, 
the extrinsic highly doped p and n regions form 
the conducting electrodes to the low conduc- 
tance space-charge junction region. There has 
been a continuing interest in the effect of elec- 
trode contacts (particularly contacts to semi- 
conducting and semi-insulating materials) over 
many years, and although general observations 
of the effects of such contacts can be made, the 
exact nature of the contacted region and of the 
effects of charge build-up or depletion and of 
non-perfect charge exchange at the electrodes 
are, as yet, imperfectly understood. Recent 
advances in our understanding of the dielectric 
properties of semi-insulating and insulating 
materials [1, 2] has suggested the possibility of 
examining the macroscopic properties of surface 
layers by using the observed dielectric response 
of the sample with its electrodes. The aim here is 
to determine the types of response that can be 
expected, and to indicate where such effects have 
been observed experimentally. Where useful 
experimental data are available detailed analyses 
of the observed response in terms of bulk and 
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surface layer properties will be made and 
discussed. 

Conventially the bulk dielectric response of a 
sample can be measured in terms of the complex 
capacitance. When conductivity is present in the 
sample this gives a contribution which is in 
phase with the measuring a.c. voltage and hence 
contributes to the imaginary component of the 
capitance, the dielectric loss. Generally one par- 
ticular process is of interest in the frequency 
range available and the capacitance can then be 
expressed as the sum of a dispersive component 
and the effective "infinite" frequency part which 
is totally real and, itself, given by the summation 
of the incremental capacitive dispersions which 
occur at higher frequencies th~n that of interest. 
Hence we have, with i = ~ / -  1, 

C(co) = C'(co)  - iC"(co) (la) 

= eo [s'(m) - i~"(co)l - i ~ - ~ ( I b )  

= Eo-~ [Z'(CO) + e(oo) - iZ"(CO)] 

. o A  
z (lc) 

cod  

where s0 is the absolute permittivity, 8.85 x 
| 0  -12 F m - l ;  A is the area; d the sample thick- 
ness; e(o)) - i~"(co) is the frequency-dependent 
permittivity; ~(oo) the "infinite" frequency 

�9 1985 Chapman and Hal l  Ltd. 4431 



permittivity; Z(co) = Z'(co) - ix"(co) = e(co) 
-e (oo)  the dielectric susceptibili{y; co the 
measuring frequency in radians and a the con- 
ductivity. The conductance of the sample G, the 
inverse of the resistance, is given by a A / d  and 
hence the loss component of the capacitance, or 
the dielectric loss, is 

C"(o)) = e0 A e"(co) + _G (ld) 
( A  co 

Electrically the three responses from the 
susceptibility, the "infinite" frequency permit- 
tivity and the conductance act as admittances 
( Y  = icoC) in parallel and hence are directly 
additive, as in Equations la to c. 

The simplest electrical model of a material on 
which electrodes have been superposed is to 
describe the bulk of the sample as having an 
electrical impedance Zb, where Zb = 1/Yb, and 
the two regions in proximity to the electrodes as, 
jointly, having an equivalent impedance Zs. As 
the bulk and surface regions are electrically in 
series the total impedance is the summation of 
these individual values, i.e. Zb + Zs. In general 
neither of the impedances will be either purely 
real or purely imaginary and it is an advantage 
of the dielectric technique of investigation, 
unlike for example conductivity measurement, 
that both components of the response can be 
observed. The capacitance of the series combi- 
nation of the bulk and surface elements is given 
by 

C(CO) = ( i co ) -~ (Zb  Jr- Z s )  - I  (2a) 

= c i (co) c, (co) [cb (co) + c, (co)]-' 
(2b) 

In the particular case in which the impedance 
of the bulk is entirely real and that of the surface 
layer entirely imaginary, that is for the series 
combination of the bulk resistance Ru and the 
surface layer capacitance C~, Equation 2b gives 
the well known Maxwell-Wagner [3, 4] response 

C(co) = Cs(1 + icoRbC~) ' (3a) 

= C~(1 - icor)/(1 + ico2r2) (3b) 

in which the characteristic relaxation time of the 
sample, ~, is given by the product Rb C,. As can 
be seen by inspection of Equation 3b the 
Maxwell-Wagner response is of the Debye form 
[5]. Equation 3, however, contains three ele- 
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merits of information that are of direct use. At 
zero frequency the magnitude of the (totally real) 
capacitance is Cs, the surface layer value, and no 
d.c. current flows. The maximum in the loss 
component of the capacitance occurs at the 
radian frequency z ~(= Gb/Cs)  , and finally in 
the frequency range in excess of r-  ~ the imagin- 
ary component tends asymptotically to the limit- 
ing value Gb/co. Hence knowledge of any two of 
these three quantities allows complete evalu- 
ation of the system in terms of the postulated 
bulk and surface properties. 

Unfortunately few real systems behave in this 
simple Maxwell-Wagner-Debye form. Indeed 
the observation of perfect Maxwell-Wagner 
behaviour in solids is doubtful, although it may 
be expected to be found in liquids which contain 
free ions. However it is just in the complexity of 
the experimentally observed behaviour that the 
information, which allows detailed evaluation of 
the system response, lies. In order to examine 
these more complex systems it is necessary to 
establish reasonable models for the actual 
behaviour of both the bulk and surface regions. 
To these can then be applied Equations 1 and 2 
which will then characterize the broad features 
of the responses which might be expected. Once 
these have been established comparison with 
the experimental data can be made, both on 
qualitative and quantitative bases. In the follow- 
ing section the background to a comprehensive 
model of dielectric response will be suggested, 
and in Section 3 a range of computer-calculated 
model responses will be examined. In Section 4 
a range of experimental observations will be 
analysed in terms of the model proposed in the 
preceding section, and finally the usefulness of 
the approach will be discussed. 

2. Response model 
2.1. Dispersive processes 
Critical evaluation of the dielectric response of 
real materials has shown that the dielectric 
susceptibility can be expressed in the form [6, 7] 

Z(co) = g(0)F(co/cox) (4) 

where Z(0) is the magnitude of the susceptibility 
dispersion, i.e. the dielectric increment "for the 
single process of relaxation, and F(co/cox) is the 
spectral shape function for this process normal- 
ized to the characteristic frequency co x . For 
bound dipolar charge centres the cluster model 



of relaxation [8-10] has shown that the spectral 
shape function takes the form 

F co = Fo ~ 1 + 2FI 
cop] 

x 1 --  n, 1 - m ; 2  - n; i + ico/co 

where n and m, which have been determined as 
the correlation coefficients for specific intra- 
cluster and inter-cluster relaxation mechanisms, 
respectively, lie between zero and unity and/7o is 
the normalizing parameter 

F0 = F(2 - n ) r ( m ) / F ( 1  + m - n) 

where F ( )  being the gamma function and 
2F1(, ;;) the gaussian hypergeometric function. 
When the dipolar charges are only weakly 
bound to one another within the material, and 
particularly when they can only move effectively 
within limited dimensionality channels, as in the 
case of the quasi-free ions in fast ion conductors, 
the spectral shape function takes the form [11] 
f o r l  < p + n <  2 

F co = F~ - t  I 4- 2FI 

( ' )  x 1 -- n, 1 + p; 2 -- n; 1 + ico/coc (5b) 

in which p is the fractional correlation index for 
the transport of the quasi-free charge between 
clusters and F~ is the equivalent normalizing 
constant 

Fj = F(2 - n)F(1 - p) kill-'(2 - n - p ) ]  

Equations 5 contain, in their asymptotic 
behaviour at frequencies much greater and 
much less than the characteristic values cop and 
coc, respectively, the fractional powerqaw behav- 
iour which has been found [1, 6, 7, 12, 13] to be 
the general feature of dielectric response in con- 
densed matter. For the bound dipolar case 

;((co) o'c z(O)(ico/cop) "-~ co > cop (6a) 

and 

Z(O) - -  Z(co) oC (ico/O)p) m co ~ COp ( 6 b )  

whereas in the case of the quasi-free charges 
Equation 6a continues to apply, with cop re- 

placed by coc, but the low-frequency behaviour 
now becomes 

)~(co) oc (ico/coc) -p co ~ coc (6c) 

The complex frequency terms in Equations 6 
contain the well-established relationships 
between the real and imaginary parts of the 
susceptibility, initially reported by Jonscher [12] 
in the form 

Z"(co)/Z'(o-~) = cot (n~/2) co >> cop, coc (7a) 

Equivalent relations can be determined from 
Equations 6b and c as 

z"(co) 
= tan (m=/2) ~o 4~ cop (7b) 

z(O) - z'(co) 

and 

Z"(co)fg'(co) = tan (p~12)  co 4~ coo (7c) 

respectively. 
Making use of Equations 1, 4 and 5 the 

generalized dielectric capacitance of a sample 
can be expressed in terms of the effective com- 
plex capacitance and parallel conductance as 

C(c9)  = S[x(O)F(co/cox)  + e(Qo)] --  iG/co 

(8) 

where S is the sample factor eoA/d .  The equi- 
valent electrical circuit is shown in schematic 
form in Fig. 1. In this, and subsequent circuit 
representations, the non-Debye spectral disper- 
sion F(co/cox) has been indicated by shading 
within the capacitor plates; single-line shading 
indicates the bound dipolar case of Equation 5a, 
cross-shading the quasi-free charge case of 
Equation 5b, and dot-shading the degenerate 
case in which only the high-frequency behaviour 
of Equation 6a has been seen experimentally. 
Discontinuous cross-shading, as in Fig. 1, is 
retained to indicate a non-specified dispersive 
element. 

In order to make clear the difference between 
the bound dipolar case and the quasi-free charge 
case Fig. 2a shows the former response and 
Fig. 2b the latter. In each of  these diagrams an 
"infinite" frequency capacitance, Se(oo), has 
been indicated in the high-frequency region and 
a range of conductances in the low-frequency 
region. The large dispersions:in both the real and 
imaginary parts of the capacitance in the quasi- 
free charge case, as the frequency tends to zero, 
can be clearly seen and it is also apparent that 

4 4 3 3  



E(___o) ~R=WG 

C (to) = S[  ('X.(O )F(wko x) + r.(m ))- i gloo ] 

Figure 1 A generalized circuit element that has been 
constructed from a dispersive susceptibility, z(O)F(oJ/o)~), a 
non-dispersive capacitance o f  permittivity e(oe), and a con- 
ductance o f  magni tude G. S is the sample factor e~A/d and 
~o the frequency. 

there is a minimum value of the conductance 
that can be differentiated from the loss disper- 
sion in this case. 

2.2. Electrode/surface characterization 
Two broad patterns of behaviour can be used 
to characterize the surface layers adjacent 
to the electrodes. A Schottky-like depletion 
region can be envisaged in which a high- 
resistance layer of thickness d, is established on 
balancing the contact potential differences 
between the electrodes and the bulk and on 
filling surface states where these exist. In this 
case one might be reasonably correct in modell- 
ing the surface layer as a capacitance of large 
magnitude. Alternatively a pool of  charge could 
be injected into the sample from the electrode, in 
which case the pertinent characterization par- 

ameter might well be the surface layer conduc- 
tance. The complex capacitance contained in 
Equation 8, however, has both these forms as 
limiting cases and it is obviously convenient, 
apart from retaining generality, if the response 
of the surface layer is taken as being quali- 
tatively similar to that already attributed to the 
bulk of the material. By doing so the quan- 
titative differences between the bulk and surface 
regions can be determined from the magnitude 
of the parameters deduced from analysis of the 
experimental data without constraints being 
imposed on the system. This approach has the 
additional advantage of retaining the elements 
of the cluster model of dielectric relaxation with- 
in both surface and bulk regions and, in par- 
ticular, it allows estimation of the nature of 
correlation effects within both regions to be 
evaluated. 

2.3, Diffusion barrier layers 
Examination of a range of experimental data has 
shown that in a number of  cases which are of 
interest the lowest-frequency dielectric response 
can be characterized by Equation 6a with n 
taking a value close to 1/2. It has already been 
pointed out [11, 14] that this type of response c a n  
be expected when a charge barrier layer is 
formed by diffusion. The more general case will 
be considered here in which 

Z(o)) = Z(e)a)(i~o/o)a)-' s ~ 0.5 (9) 

defines a barrier-layer susceptibility of magnitude 
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Figure 2 Schematic frequency response for the bound-charge,  loss-peak and quasi-free charge, anomalous-dispersion 
processes. In both cases the effect of  parallel conductances,  of  magni tude G, and an "infinite" frequency, non-dispersive 
capacitance C(oo) are shown by dashed curves. The plots are in relative units. (a) The bound charge behaviour with m = 0.7, 
n = 0.2 and Z(0) = 1.0. The characteristic frequency ogp is indicated, the conductances range from 1.0 to 10 3 and the 
"infinite" frequency capacitance is of  magni tude 0.1. (b) the quasi-free charge-dispersion behaviour with p = 0.9, n = 0.8 
and magni tude 1.0. The characteristic frequency is indicated as c~ c, the conductances range from 10 4 to 10 6 and  C(oe) is 0.3. 
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)~((J)d) a t  a frequency coa which lies within the 
measured range of fractional powerqaw 
response. This form of definition has to be used 
as there is no characteristic frequency exper- 
imentally accessible. The barrier element defined 
by Equation 9 has the unusual property that it 
interacts with either a series resistance or a series 
capacitance to give dispersions which are not of 
simple, single power-law form. 

The series resistance case has already been 
considered by Jonscher [1]. Letting the capaci- 
tance of the diffusive barrier layer be given by 

c~(ieo/~o~)-" (lO) 

where Ca = Sz(coa), and letting the series resist- 
ance be R, the resultant capacitance of the 
system is 

C~R(iz)-~[1 - (iz)l-~RCa] 
C(o3) = 1 + z 2 2sR2C~ + 2fl-~RCa sin(sn/2) 

(11) 

where z = co/oJa. In the limiting case of low 
frequencies the fractional power-law behaviour 
of Equation 10 is recovered, whereas at high 
frequencies the imaginary component is (coR) 
with the real component becoming 

C'(co) = R-2Ca ~z ~-2 cos (sr~/2) (12) 

as indicated in Fig. 3a. 
Taking the same capacitative barrier in series 

with a non-dispersive capacitance of magnitude 
C gives the equivalent response as 

CCa[C(iz)-" + Cdz -2~1 
C ( o )  = C2 + C~z_2S + 2CCdz_ , (13) 

which gives a peak in the loss component at the 
frequency o~ where 

3 
r  

u 1 
r 
t-1 

o ~ -3 

la) 

(ito) -s _L_  
~:~; ~, Catito) "~ 

? 6 9 

Log [frequency) (radians) 

(J)s = O ) d ( f d / C )  1Is (14 )  

and the loss curve is symmetrical about ~s, that 
is the characteristic of Equation 13 is of the 
Cole-Cole [15] form with the Cole-Cole 
parameter fi given by (1 - s). Fig. 3b shows 
that the complete response is dominated by the 
capacitance C at low frequencies (Cd(ico) -S > 
C), and that co, is the frequency at which the 
magnitudes of the two elements are equal. 

2.4. Series combinat ion 
In the previous subsection the series response of 
the diffusive barrier and the single perfectly 
resistive or capacitative elements have been 
examined. In the more general case, indicated in 
Fig. 4, analytical evaluation is no longer simple 
and recourse has to be made to computer 
modelling. Because of the power-law behaviour 
that is present in the responses it has been found 
convenient to use log-log plots for the fre- 
quency response of the capacitance. As indi- 
cated briefly in Section 1, the responses could 
equally well be represented in terms of admit- 
tance or impedance. The quasi-free carrier 
response has commonly been presented in terms 
of the dielectric modulus, the inverse of the 
capacitance or permittivity, for in this rep- 
resentation the modulus tends to zero at zero 
frequency. Each of these presentations has its 
advantages and disadvantages, but all are essen- 
tially equivalent. Other techniques 9f presen- 
tation have been used, the most common of 
which is the Cole-Cole plot [15] in which the 
imaginary part of the response is plotted as a 
function of the real part using linear scales. For 
the perfect Debye case of Equation 3b a semi- 
circle is obtained, and hence this is a convenient 
technique for testing the degree of fit to fhe 
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2r ~ C to -s 

"~"- I C'(to) ~ ~ -7- C 

8 V - - - - -  
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{b) Log [frequency] (radians) 

Figure 3 The response  charac ter i s t ics  o f  a diffusive b o u n d a r y  layer  in series wi th  (a) a conduc tance  and (b) a capaci tance .  

In  bo th  cases the diffusive capac i tance  is o f  m a g n i t u d e  3 • 10 2 relat ive uni ts  a t  one r ad ian  and  s = 0.3, The conduc tance  
value  is 10 ~ and  the capac i t ance  10. N o t e  the ~o ~ 2 a sympto t i c  behav iou r  in the real  pa r t  of  the  capac i tance  at  h igh  
frequencies.  
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Figure 4 The series ar rangement  of  two elements of  the type 
shown in Fig. 1. Arbitrarily one element has been associated 
with the bulk material response and is of  impedance Zb, 
whilst the other element is associated with the surface-layer 
response and has  impedance Z~. 

Debye characteristic. With fractional power-law 
response the Cole-Cole plot gives lines of con- 
stant gradient at the high and low frequency 
limits (see Equations 7) but the common lack of 
accessible frequency information on these plots 
is a disadvantage as Jonscher [1, 16] has indi- 

cated in his examination of these alternative 
methods of presentation. 

One criticism of computer-fitting the observed 
responses by a series pair of elements is the 
large number of free variables that are present. 
In practice good fitting can only be achieved 
when there is sufficient information in the 
reported experimental data to characterize all 
the necessary parameters. It has been the 
practice here to always use the minimum number 
of circuit elements that are essential for a fit to 
the experimental data. 

3. Computed responses 
Before analysing specific experimental data a 
number of model characteristics will be presen- 
ted in this section, in order that the broad 
features of the experimental results in the follow- 
ing section may be understood. Fig. 5 shows 
the response for a conventional series pair of 
parallel, non-dispersive resistance and capaci- 
tance combinations. The curves shown in 
Fig. 5a have been obtained by using the values 
of R and C listed in the caption. These values 
have been chosen so that one parallel pair domi- 
nate the response at high frequencies and the 
other at low frequencies. The structure in this 
plot can be understood in terms of the transfer 
of the effective impedance within the complete 
system from one element of the series pair to the 
other as the frequency is varied. The comparable 
response shown in Fig. 5b has been obtained 
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Figure 5 The response of a series combinat ion of  G and  C parallel elements. In both cases Cj = 0.1, C 2 = 10, G~ = 10 6 and 
G 2 = 10 2, in relative units. The characteristic shown in (a) indicates the dominance of  the combination G l and Cj at high 
frequencies and the combinat ion G 2 and C z at low frequencies. Plot (b) has been obtained by interchanging the capacitative 
elements and is dominated throughout  the frequency range by the parallel combination of G 2 and C]. In (a) the inverses of  
the relaxation times are indicated and the M a x w e l l - W a g n e r - D e b y e  characteristic in the region of  (G~/C 2) is clearly shown. 
In (b) the slight change in magni tude o f  the loss component  in the region 10 5 radians is due to the presence of  the second 
element, and is the only indication of  it. The calculated inflection frequency is shown. 
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using the identical circuit components but 
exchanging the two capacitances. In this case the - 3 
dominant behaviour is that of the higher 
impedance element throughout the frequency .~ 
range and there is only a weak indication, by 
an increase in the loss component by a 
factor (21/2 for the R and C values used here), of ~ -~ 
the lower impedance element which is in series 
with it. This dominance by one element clearly o 
shows how, in many dielectric investigations, the 
effect of the putative surface layers is not 
observed; their impedance is sufficiently smaller 
than that of the bulk so as not to contribute 8 

c 

significantly to the response. 
As discussed earlier Fig. 5a contains sufficient ~ o. 

information to allow complete analysis of the 0 
a J  - 1  magnitudes of the individual components of the .>__ 

original circuit. In particular it should be noted 
that the conductance elements transform, in this -~ -3 

J log-log plot, into segments of straight lines of 
gradient ( -  1) for the imaginary component of 
the complex capacitance. This is a basic feature 
of these plots and it will be used not only as a 
strong indicator of the existence of conductance 
(resistance) elements but also of their magni- 
tude. 

o _  The spectral response of a diffusive barrier 3 
layer in series with a parallel G and C combi- 
nation is shown in Fig. 6a. The observed 
response is a compound of that already presen- 
ted in Fig. 3, with both the quasi-Debye disper- 
sion due to the series resistance and the Cole-  
Cole dispersion due to the series capacitance 
being evident. With the particular value of s used 
here, 0.3, a wide frequency range has been 
required to cover the full characteristic. The 
following diagram (Fig. 6b) indicates how the 
high-frequency Cole-Cole dispersion can be 
removed by the presence of a second capacitive 
element in parallel with the diffusive boundary 
element. Physically this occurs when there is a 
minimum distance over which diffusion can take 
place. The magnitude of this parallel capaci- 
tance is shown in the diagram as C2(oo), but any 
value lying between this and C~ ( ~ )  is sufficient 
to saturate the barrier-layer capacitance and 
remove the high-frequency Cole-Cole disper- 
sion. 

The almost d.c. properties of the loss com- 
ponent of the quasi-free charge case can act in a 
similar manner to a conductance. Fig. 6c shows 
the comparable response to that of Fig. 6a with 
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Figure 6 (a) The dispersion from a series combination of the 
diffusive element of Fig. 3 and a G and C parallel combi- 
nation. The response contains both the forms presented in 
Fig. 3 in parallel summation. (b) With a suitable capacitance 
in parallel across the diffusive barrier element the condition 
for the high-frequency Cole Cole type of dispersion in (a) is 
invalidated and this loss peak does not develop. (c)On 
replacing the conductive element with a quasi-free charge 
dispersion process a further generalization of the Maxwell- 
Wagner response has been obtained. In this case the gradient 
of the loss in the Maxwell-Wagner dispersion region is ( - p )  
in place of ( -  1) and there is a further reduction in the 
magnitude of the gradient in the real component. The high- 
frequency loss peak response continues to be present in the 
absence of a blocking capacitor in parallel with the diffusive 
barrier layer. 

the conductance replaced by an almost equi- 
valent quasi-flee charge element. The same 
broad pattern of behaviour can be seen and the 
high-frequency Cole-Cole type of dispersion 
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can, again, be eliminated by having a suitable 
capacitance in parallel with the diffusive barrier 
element. The essential difference between the 
plots shown in Figs. 6a and c is in the gradients 
of the loss and capacitance in the frequency 
range between 102 and l 0  4 frequency units. 
Essentially Fig. 6c presents a generalized 
Maxwell-Wagner response, and that contained 
in Fig. 3a is the particular limiting case when 
transport is non-dispersive. 

4. Experimental responses 
A range of experimentally determined dielectric 
responses will be examined and analysed in this 
section in terms of the model derived in Sec- 
tion 2. The common feature in the choice of data 
was the presence of barrier-layer effects in series 
with a bulk dielectric response. In the first case 
that will be considered the barrier has been 
introduced artificially, whilst in all the other 
cases the barrier/surface layers are intrinsic to 
the samples or to their method of preparation. 

4.1. Blocking con tac t  to GaAs 
Fig. 7a shows the dielectric response measured 
on a sample of gallium arsenide. The "infinite" 
frequency capacitance, 2.9 x 1 0 - ' F ,  
agrees with the sample factor and the quoted 
bulk dielectric constant of 12.95. For fre- 
quencies less than 103 Hz there is a dispersion in 
the real part of the capacitance, of magnitude 
7.8 x 10 -l~ F, which can be associated with the 
formation of a Schottky surface layer. The par- 

allel conductance can be determined from the 
low-frequency loss as 3.2 x 1 0 - 9 ~  i.  The 
curves through the data points in Fig. 7a were 
obtained using these values and spectral shape 
parameters of n = 0.5 and m = 0.6. The data 
shown in this figure were measured at 295 K and 
evaporated aluminium electrodes were used, 
contact to the electrodes being made by copper 
wires and conducting silver paste. The equi- 
valent response shown in Fig. 7b was obtained 
from the same sample, at 300 K, but with con- 
tacts of thin aluminized polymer foil held 
between the aluminized sample faces and press- 
ure pads. The series capacitance of the foils was 
3 x 10 -1~ F and they were of low loss. The plots 
through the data points in Fig. 7b were obtained 
by inserting this value of capacitance in series 
with the element parameters obtained from the 
previous curve fitting. As can be seen, good 
agreement has been obtained with the exper- 
imental data. The only feature shown in this 
figure that is not reproduced by the model struc- 
ture is the loss response in the region of 10 -2 Hz, 
which is due to the loss in the polymer foil and 
is not sufficiently resolved to be introduced into 
the model. 

Examination of the magnitudes of the 
responses in Figs. 7a and b shows that not only 
have the blocking contacts eliminated the d.c. 
conductance but they have also affected the 
magnitude of the dispersion. The series model, 
however, automatically takes this into account. 
For perfect blocking with no dispersion 
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Figure 7 The dielectric response of  a sample of  gallium arsenide with non-blocking and blocking surface layers. (a) Non-  
blocking contacts. The plots through the data  points have been obtained by making use of  the circuit shown in the inset, 
with C(0) = 7.8 x 10 - I ~  m = 0.6, n = 0.5, cop = 6.1 x 10 - I H z ,  C(oo) = 2.9 x 10 - u F  and G = 4.5 x 10 -9S.  
(b) Blocking contacts. The data  points show the response for the same sample on using thin aluminized polymer foil as the 
electrodes. The total capacitance o f  the foils was 3.0 x 10 -I~ F and the curves through the data  points have been obtained 
by using this value of  capacitance in series with the circuit elements characterized in (a). 
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Figure 8 The dielectric response 
of a porous ceramic catalyst 
containing adsorbed water as 
reported by Ramdeen et al. [17]. 
The magnitudes of the circuit ele- 
ments used in curve-fitting the 
data points are given in the insert. 
The presence of the capacitance 
in parallel with the diffusive ele- 
ment is required by the form of 
the high-frequency response of 
the loss component. The square- 
root asymptotic dependence at 
low frequencies is approached but 
not reached in this temperature- 
normalized plot. 

distortion a larger series capacitance would be 
required. 

4.2.  Ca ta lys t  in a h u m i d  a t m o s p h e r e  
As the second example the dielectric properties 
of  a sample of  porous ceramic catalyst with 
evaporated aluminium electrodes will be 
examined. When this highly porous material is 
held under high-humidity conditions water 
molecules adsorb on to the internal pore sur- 
faces. At very high humidities the d.c. conduc- 
tance can be found, although a more common 
response is the dispersion due to a quasi-free 
charge transport [17]. In the temperature range 
from room temperature to 373 K the charac- 
teristic shown in Fig. 8 was obtained by 
temperature-normalizing the measured data 
(Fig. 3b) of  Ramdeen e t  al.  [17]. The general 
form here is of the type already indicated in 
Fig. 6, in which a barrier layer with fractional 
power-law behaviour is in series with the quasi- 
free charge dispersion process characteristic of  
the bulk response. The curves through the data 
points in this figure have been obtained by using 
the circuit elements shown in the inset to the 
figure with the values indicated. A true diffusive 
barrier has been formed in this material, 
s = 0.5, but even the extended normalized fre- 
quency does not go low enough to show the 
equality of the real and imaginary components 
(Equation 7a). The weak interaction between 
the extrapolation of the co- t/2 characteristic and 
the high-frequency loss indicates that the con- 
ditions of  Fig. 6b apply with a small capacitative 

element in parallel with the diffusive barrier 
layer. The large value of  p, 0.97, indicates that 
the ion motion in the water adsorbate is highly 
correlated and approximates closely to a d.c. 
conduction process. As the response is sensitive 
to the amount of  water adsorbed [17] it has been 
proposed that the mobile ions are hydroxyl ions. 
The large dispersion caused by the formation of 
the diffusion barrier indicates that it has a thick- 
ness of  about 10 -6 of the total sample thickness, 
that is in the region of 3nm when fully 
developed at the lowest relative frequencies. 

4.3. Semiconducting aggregate 
The dielectric response, in terms of relative 
permittivity, of  a sintered semiconducting aggre- 
gate of MgA10.4Fe~.604 with evaporated silver 
electrodes is shown in Fig. 9a. The data were 
measured over the temperature range 227 to 
344K by Fairweather and Frost [18] and the 
diagram presents the data in a temperature- 
normalized form [6] with the plot scaled for 
344 K. The permittivity is scaled in terms of the 
high-frequency value at this temperature which 
was quoted by Fairweather and Frost as 17. The 
curves through the data have been obtained by 
modelling the response as a quasi-free carrier 
element in series with a parallel conductance and 
capacitance combination. The inset to the figure 
gives both the circuit diagram and the values 
of the individual parameters. Physically the 
material was reported as being formed of  local 
crystalline particles with the interstices between 
these filled with poorly ordered resistive semi- 
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Figure 9 The dispersion in permittivity reported by Fairweather and Frost [18] for an aggregated sample of the semiconductor 
MgA10.4Fel.604. The principal feature here is the modified Maxwell-Wagner response of the type shown in Fig. 6a. The 
frequency range is too limited at high frequencies to indicate whether a second capacitative element is in parallel with the 
quasi-free charge dispersion element. The anomalous low-frequency dispersion of Equation 6c is also poorly characterized 
and the value of p, 0.9, can only be taken as approximate. (a) The temperature-normalized characteristic scaled at 344 K and 
fitted by the circuit shown in the inset. (b) An Arrhenius plot of the temperature dependence of the conductivity as indicated 
by the relative frequency shift of a temperature datum point, 104 Hz and 0.5 permittivity, showing that the conductivity is 
activated with an energy of 0.33 eV. 

conductor. In the original analysis of the data 
[18] the dielectric response was modelled by a 
three-element R C circuit, using non-dispersive 
R and C elements. The agreement between the 
measured response and that determined from 
the model was relatively poor. The essential dif- 
ference between that construct and the one 
presented here is the recognition that the lowest 
frequency response is caused by a quasi-free 
carrier dispersion. The large magnitude of  this 
response indicates that the quasi-conduction 
region can be associated with the thin layer of 
interparticulate material, the individual particles 
exhibiting a strong conductivity in parallel with 
a high permittivity, typical of an ordered semi- 
conductor. 

We expect co c and Z(coc) to be temperature- 
dependent, but the principal temperature depen- 
dence seen in this normalized plot is that of  the 
conductivity, for only the highest-temperature 
data give information in the region of  cor 
Fig. 9b presents an Arrhenius plot for this con- 
ductivity which can be seen to be activated with 
an activation energy of  0.33 eV. In the ordered 
particles the carriers will be either electrons or 
holes which become blocked in the interparticle 
disordered regions. It is likely that the same 
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carriers contribute to the quasi-free carrier 
transport. 

4.4.  I o n - e x c h a n g e  resin 
The response from a qualitatively similar but 
quantitatively different model structure is shown 
in Fig. 10. The data presented here were 
measured by Ishakawa et al. [19] for the 
response of  an ion-exchange resin in water using 
platinum electrodes. The resin was a sodium- 
form SP-Sephadex C-25 and the sample was 
measured at 297 K. Here there is no doubt  about 
the quasi-free carrier dispersion process, the 
low-frequency parallel dispersions in the real 
and imaginary parts of  the capacitance being 
particularly well developed. The conductivity 
acts as a high-frequency cut-off giving the 
generalized Maxwell-Wagner response charac- 
teristic in the region of  107 to 108 Hz. There is 
also no doubt that in this case  the transport 
is due to ion motion in water (e = 86) and 
the formation of  electrical double layers around 
the resin particles at low frequencies leads to the 
quasi-free charge process which decreases the 
effective transport. At 105 Hz the ratio of the 
extrapolated d.c. conduction to the magnitude 
of the loss component of  the quasi-free charge 
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Figure lO The dielectric response of an ion-exchange resin in water. The data are taken from Ishikawa et al. [19]. Qualitatively 
this characteristic is comparable to that shown in Fig. 9 but the relatively higher conductivity has allowed the development 
of the quasi-free charge tow-frequency dispersion. In this case the inset shows that the entire response has been modelled using 
only three circuit elements, each of which is well characterized. 

dispersion is about  30 : 1, indicating a transport  
efficiency of about  3%. 

There is no evidence in the experimental data 
for diffusion taking any part  in the formation of 
the double layer, nor is there any evidence for a 
frequency-independent capacitance in parallel 
with the quasi-free charge dispersion. Hence at 
high frequencies, in excess of  108 Hz, the system 
would act as a conductivity and permittivity 
in parallel. At lower frequencies an almost 
frequency-independent boundary layer is 
formed ( 1 -  n = 0.05) to give the almost 
perfect Maxwel l -Wagner  response which blocks 
the conductivity, and which, in turn, exhibits 
the limited transport  of  the quasi-free charge 
dispersion. 

4.5.  Elect rolyt ic  cell 
As a final example the frequency response of the 
measured capacitance of  one electrode in an 
electrolytic cell is shown in Fig. 11. The data 
were obtained by Briggs [20] by using a three- 
terminal technique in which a reference elec- 
trode probe was placed in the 1 M aqueous 
H2 SO4 solution about  5 mm away from the sur- 
face of  the 0.36 cm 2 platinum electrode surface. 
The measurements were made at 298 K and a 
fixed d.c. bias between the platinum and ref- 

erence electrode corresponding to the onset of  
the hydrogen evolution reaction at the platinum 
electrode surface. The d.c. cell current, measured 
both before and after the frequency run, was 
5 #A 4- 50%, and the response was linear in a.c. 
field for the small test potential of  5 m V r m s  
which was used. 

The data have been fitted over the measured 
range of 10 -1 to 104Hz by the circuit shown 
diagramatically in the inset to Fig. 11. The series 
conductance here is the purely real impedance 
of the electrolyte, and the Helmholtz double 
layer at the surface of the platinum has been 
modelled by a diffusive element of  magnitude 
1.1 x 10-2F (at l radian) in parallel with a 
conductance of 2.33 x 10-2S and a non- 
dispersive capacitance of  magnitude 1.2 x 
10 4 F. The non-dispersive capacitance again 
implies that there is a minimum path length over 
which diffusion can take place. Taking a relative 
dielectric constant of  80 for the solution the 
minimum path length can be estimated as 
0.21nm, that is of  the order of  an atomic 
spacing. The particles taking part  in the dif- 
fusion process are charged and hence contribute 
an a.c. current to the total current flow. At a 
frequency of one radian the fraction of the 
total charge carried by diffusion is 0.32. The 
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minimum diffusion path length is reached for fre- 
quencies in excess of  1.3 • 103 Hz and in this 
frequency region the system behaviour is a con- 
ventional Maxwell-Wagner response with the 
solution conductance in series with the fixed 
monolayer capacitance at the electrode and its 
parallel but small leakage conductance. 

5. D i scuss ion  
A range of solid and liquid barrier systems have 
been examined and it has been shown that the 
experimental data can be reproduced accurately 
using the series circuit shown diagrammatically 
in Fig. 4. In general it has been found that only 
four of  the six possible elements have been 
required, but in all cases the dispersive capaci- 
tative element defined by Equations 4, 5 and 9 
has been found to be an essential feature of  
the response. Non-dispersive resistance and 
capacitance-element circuit modelling has been 
extensively used [21], but this results in com- 
plicated many-element networks which may 
have limited applicability, and which do not 
reveal the basic physics of  the elemental 
responders. The observation of  dispersive ele- 
ments in bulk dielectric response is well estab- 
lished [1, 6, 7] and here it has been shown they 
are also present in barrier layers. The particular 
case of  the diffusive element, defined by 
Equation 10 with s = 1/2, has been modelled by 
Warburg [14] as an infinite chain of  resistors and 
capacitors, whereas in terms of  the cluster-model 
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Figure 11 The dielectric response 
of the electrode region of an elec- 
trolytic cell. A three-terminal 
probe technique was used and the 
cell was biased to the onset of 
hydrogen evolution at the plati- 
num electrode. The experimental 
data were communicated by 
Briggs [20]. The series conduc- 
tance is that of the I M H 2SO 4 
electrolyte, and the triple- 
component element in series with 
it models the response of the 
Helmholtz double layer at the 
electrode. 

approach the characteristic develops naturally 
from the t -~/2 time-dependence of  classical 
diffusion. 

It is not our intention here to discuss the 
physics of  the dispersive elements for each of the 
cases examined. To do so would require more 
experimental data than have been reported. 
Such discussions have already been given, for 
both bound-charge cases [22-25] and for a 
quasi-free charge carrier case I! 7]. We will, how- 
ever, examine the differences between the three 
types of dispersive element which have been 
observed. In the gallium arsenide sample Fig. 7a 
shows the development of a Schottky barrier at 
low frequencies. Modulation of the barrier by 
the a.c. probe voltage sweeps charge in and out 
of the barrier as it grows and contracts, hence, 
this charge is essentially bound. The charge that 
is transported across the barrier forms a parallel 
leakage current. The values for the spectral 
shape or correlation parameters, m = 0.6 and 
n = 0.5, indicate that the charge movement is 
diffusion-like. In our experience these m and n 
values are typical for Schottky barriers over a 
range of semiconductors. The relaxation time 
for the barrier formation, 0.26sec, is, in the 
cluster model, the relaxation time averaged over 
all the elemental cluster responses which form 
the Schottky response. Hence this time is to be 
associated with the barrier formation and not 
with the individual relaxation times of  excitation 
or recombination of charges. 



The quasi-free carrier response, in which the 
transport of charge is imperfect, has been 
observed in the wet porous ceramic, in the 
barrier layers between the semiconducting 
aggregated particles, and in the ion-exchange 
resin. In the first of these it has been shown [17] 
that this quasi-d.c, transport is through the 
water adsorbate within the channels in the 
ceramic, and the particular feature of interest 
here is the observation of diffusive behaviour at 
low frequencies, which even further limits charge 
transport, and which is almost certainly due to 
charge build-up in the region of the electrodes. 
The observation of the quasi-free carrier trans- 
port in the sintered semiconductor is unexpected 
and must be related to charge build-up on the 
surfaces of the conducting particles. If the dis- 
ordered material between the particles is not 
stoichiometric then it is possible that ion motion 
occurs at least over limited path lengths. We 
note that the characterization of the highly dis- 
persive regions is very poor and that we have 
little real information about the magnitude ofp. 
On the evidence that exists there is no leakage 
current in parallel with the quasi-free charge 
dispersion. If we assume, as is likely to be the 
case, that the current within the particles is elec- 
tronic and the charge transport between the 
particles is ionic, then the transport is limited 
either by inefficient charge exchange at the sur- 
faces of the particles or by the limited supply of 
quasi-free ions. The quasi-free charge transport 
could then be envisaged as the imperfect trans- 
mission of locally induced ionic displacements 
throughout the system. In contrast the ion- 
exchange resin system gives an almost perfect 
quasi-free charge dispersion. At high fre- 
quencies (where the a.c. path length is small) 
there is a conductivity in parallel with the solvent 
permittivity, but at low frequencies (where the 
path length is longer) the transport is no longer 
coherent. This is reflected in the magnitudes of 
the correlation coefficients n and p. The former, 
the local correlation index, is high at 0.95, 
whereas the latter, the long-range inter-cluster 
index, is lower at 0.84, and can be taken as a 
direct measure of the perfection of long-range 
transmission of charge displacements in the 
system. 

Perfect classical diffusion s = 0.5, has been 
observed in two cases: in the barrier layer to the 
wet ceramic and in the Helmholtz layer at the 

platinum electrode in the electrolytic cell. 
Neither of these results is unexpected. In both 
cases there are minimal path lengths for the 
onset of diffusion, which in the case of the elec- 
trolytic cell is about a monolayer in thickness 
but in the ceramic sample is about one-third of 
the sample thickness. These reflect the differ- 
ences between the two systems. In the former, 
charge transport in a coherent, conductive, 
manner occurs in the bulk of the material. Only 
at the electrodes is a space-charge established 
and charge exchange takes place by diffusion 
through this surface layer. The surface layer 
only exists when sufficient charge per half-cycle 
reaches the electrode. In contrast the diffusional 
transport is always present for the water adsor- 
bate in the porous ceramic. At sufficiently high 
frequencies (co >coc) the latent diffusional 
charges have a sufficiently small path length that 
they remain correlated with their countercharges. 
Classical diffusion requires no correlation and 
hence can only occur once inter-cluster exchange 
processes have separated the charge and its 
countercharge. 

6. Conclusions 
It has been established that the description of the 
dielectric response of barrier effects requires the 
use of dispersive elements. It has been further 
shown that the Dissado-Hill cluster model of 
relaxation is a suitable basis for the detailed 
description of these dispersive elements. Barrier 
effects have been investigated in a wide range of 
dielectrically active systems comprising crystal- 
line and disordered semiconductors, a porous 
ceramic under humid atmosphere conditions, an 
ion-exchange resin in water, and an electrolytic 
cell. As a result a range of bulk- and barrier- 
types of response have been observed and 
modelled satisfactorily. It is realized that any 
series circuit can be represented as an electrically 
equivalent parallel circuit, but here we have 
chosen the simplest form of circuit in each case 
and have been guided in this choice by the phys- 
ics of the systems that have been investigated. 
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